Insulin-loaded PLGA microspheres for glucose-responsive release.
نویسندگان
چکیده
Porous poly(lactic-co-glycolic acid) (PLGA) microspheres were prepared, loaded with insulin, and then coated in poly(vinyl alcohol) (PVA) and a novel boronic acid-containing copolymer [poly(acrylamide phenyl boronic acid-co-N-vinylcaprolactam); p(AAPBA-co-NVCL)]. Multilayer microspheres were generated using a layer-by-layer approach depositing alternating coats of PVA and p(AAPBA-co-NVCL) on the PLGA surface, with the optimal system found to be that with eight alternating layers of each coating. The resultant material comprised spherical particles with a porous PLGA core and the pores covered in the coating layers. Insulin could successfully be loaded into the particles, with loading capacity and encapsulation efficiencies reaching 2.83 ± 0.15 and 82.6 ± 5.1% respectively, and was found to be present in the amorphous form. The insulin-loaded microspheres could regulate drug release in response to a changing concentration of glucose. In vitro and in vivo toxicology tests demonstrated that they are safe and have high biocompatibility. Using the multilayer microspheres to treat diabetic mice, we found they can effectively control blood sugar levels over at least 18 days, retaining their glucose-sensitive properties during this time. Therefore, the novel multilayer microspheres developed in this work have significant potential as smart drug-delivery systems for the treatment of diabetes.
منابع مشابه
Preparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres
Microspheres formulated from poly (D,L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres ...
متن کاملPreparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres
Microspheres formulated from poly (D,L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres ...
متن کاملLoading of Gentamicin Sulfate into Poly (Lactic-Co-Glycolic Acid) Biodegradable Microspheres
Objective: In dental treatments, use of carriers for targeted antibiotic delivery would be optimal to efficiently decrease microbial count. In this study, gentamicin was loaded into polylactic co-glycolic acid (PLGA) microspheres and its release pattern was evaluated for 20 days. Methods: In this experimental study, PLGA microspheres loaded with gentamycin were produced by the W/O/W method....
متن کاملPreparation and Characterization of PLGA Microspheres Loaded by Cyclosporine-Cyclodextrin Complex
The purpose of this study was to prepare and characterize microspheres loaded by cyclosporine A(CyA)-cyclodextrin (CD) complex. To achieve this goal, PLGA microspheres loaded by CyA CD complex were prepared by multiple emulsificationsolvent evaporation methods.Morphology, size, encapsulation efficiency and drug release from these microspheres were evaluated. Microscopic evaluation of mi...
متن کاملSustained Release of Risedronate from PLGA Microparticles Embedded in Alginate Hydrogel for Treatment of Bony Lesions
Background: Inflammatory bone resorption in periodontitis can lead to tooth loss. Systemic administration of bisphosphonates such as risedronate for preventing bone resorption can cause adverse effects. Alginate hydrogel (ALG) and poly (lactic acid-co-glycolic acid) (PLGA) microparticles have been studied as drug delivery systems for sustained release of drugs. Therefore, the release pattern of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug delivery
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2017